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ABSTRACT

This thesis proposes a new analysis/synthesis procedure for speech and image

compression. The algorithm applies the discrete wavelet transform to the subject data in

order to obtain a set of multiresolution wavelet coefficients. The wavelet coefficients are

then encoded by using a multiresolution codebook designed using the generalized Lloyd

algorithm. The statistical properties of the wavelet coefficients are utilized to determine

the number ot resolution levels as well as the codebook size at each resolution level.

Coding results show that the new procedure provides a significant improvement in the

quality of the reproduced data. The data tested includes speech, image, and transient

signals. -- - For--
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I. INTRODUCTION

The recent emergence of wavelet transforms has encournged many researchers to

seek new application areas for them [Ref. 10-121. Since discrete wavelet transforms

(DWT) are similar to subband coding systems and subband coders have been used in

speech and image compression, wavelets have found immediate application in the

waveform coding area [Ref. 10-121. Data compression consists of convening a data

sequence into a stream of relatively low bit rate data for transmission over a digital

communication channel or storage in a digital media. The DWT itself does not reduce

the total bit rate, but it provides a set of wavelet coefficients using an algorithm with

pyramidal architecture. Since wavelet coefficients at different resolution levels exhibit

different statistical characteristics, by designing a quantizer for each set, we can reduce

the bit rate without significant degradation in quality.

In this thesis, we present a coding algorithm that combines the DWT and vector

quantization (VQ). VQ is a method of quantizing a set of data samples jointly as a

vector. The overall procedure is known as an analysis-synthesis method and is extensively

used in transform and subband coding areas. It involves two steps. First, we use the

discrete wavelet transform to obtain a set of wavelet coefficients; second, we vector

quantize these coefficients by using codebooks designed for each set of coefficients. The

application of wavelet transforms to this technique is relatively new. The DWT has been

applied to image coding by combining scalar quantization and vector quantization [Ref.



101. Another algorithm has been reported that uses lattice vector quantization [Ref. 11].

The algorithm we present here uses generalized Lloyd algorithm [Ref. 81 for vector

quantization of wavelet coefficients. We apply this coding technique both to speech and

to image data.

The remainder of this thesis is organized as follows. In Chapter H, we introduce

the basic principles of wavelet theory. This chapter also covers the algorithms for the

discrete wavelet transforms in both one and two dimensions. Chapter M] describes the

basic concepts of vector quantization and presents the vector quantization algorithm used

in this thesis. In Chapters IV and V, we combine these algorithms to develop coding

methods for speech and image compression. Chapter VI presents conclusions.
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II. WAVELET TRANSFORMS

A. INTRODUCTION

Currently wavelet transforms are a popular topic of research in various signal

processing applications. They are viewed as a new way to represent signals as well as

a new teclbnique for time-frequency analysis. From the multiresolution point of view,

they provide powerful tools for speech and image coding applications. In this chapter we

briefly discuss the basic wavelet theory and discrete wavelet transforms with orthogonal

wavelets. We also explore the biorthogonal case in the last section.

B. WAVELET THEORY

Wavelet transforms can be considered an alternative to classical short-time Fourier

transforms (STFT). The basic difference is that wavelet transforms use variable window

sizes that change along the frequency range. The STFT analyzes signals by using a single

window size [Ref. 1]; consequently, the time-frequency resolution is fixed over the entire

time frequency plane (see Fig. 2.1(a)). Wavelet transforms provide an analysis method

known as constant-Q or constant-relative bandwidth analysis. In this method we use a

family of analysis filters where the time resolution increases with the center frequency

of the filters. As shown in Fig. 2.1(b), wavelet analysis provides better frequency

resolution at low frequencies and better time resolution at high frequencies. In other

words, the time-frequency window is flexible such that it automatically narrows at a high

3



frequency frequency

time time
(a) (b)

Figure 2.1 Coverage of Time-Frequency Plane for (a) STFT and (b) WT.

center frequency and widens at a low center frequency. However, the area under this

window is independent of the center frequency.

In order to perform wavelet transforms, a set of basis functions called wavelets are

required. These basis functions are obtained from a prototype function, ý(t), called the

mother wavelet, by means of dilations and translations. The basis functions then take the

form:

*0) 1 *(t-b (2.1)
a a

where a and b are the dilation and translation parameters, respectively. A basis function

becomes a dilated (low frequency) version of the prototype for a large value of a while

it is a contracted (high frequency) version for a small value of a. The dilation and
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contraction of the mother wavelet in the time domain cause a corresponding contraction

and dilation in the frequency domain.

The continuous wavelet transform (CWT) of x(t) is defined as the inner product of

the form [Ref. 131:

W (a,b) = fX(t)wb(t)dt (2.2)

where the asterisk indicates complex conjugation. Since the Oa.b are orthogonal, the

original signal can be reconstructed by using the inverse relationship:

x(t) = cff "Valb) *a,(t)dadb (2.3)

where c is a constant of proportionality.

So far we have mentioned only the wavelet function, i0(t). For multiresolution

analysis, we also need another basis function called the scaling function, 4(t). The

scaling function is used to transform the signal from a fine to a coarse scale [Ref. 1];

moreover, its operation can be viewed as lowpass filtering while that of wavelet can be

considered as highpass filtering. The scaling function has the form:

-1 Vt-b(24*Ga,b(t) - *-d(t-b). (2.4)

Equation 2.1 and 2.4 are similar in form.

1. Discretization of Dilation and Translation Parameters

The continuous wavelet transform has two drawbacks, namely, redundancy

and impracticality. Both problems can be solved by sampling the dilation and translation

5



parameters. This procedure leads to a family of wavelets and scaling functions with

discrete parameters.

Let a=a,' and b=kb,,ap, then /(t) and 4(t) defined in Eq. 2.1 and Eq. 2.4

become:

*,t (t) = aom12 4t(ao0 mt-kbo)), (2.5)

d) •(t) = aom 2 *(ao0 t-kb), (2.6)

where m, k are integers and ao > 1, bo d 0. Inserting Eq. 2.5 into Eq. 2.2 yields

wavelet coefficients in the discrete form [Ref. 5]:

Wd(m,k) =ao4 "-'fxx(t)(aomt-kbo)dt. (2.7)

The wavelet family is to be chosen so that the original signal can be uniquely

reconstructed [Ref. 1]. In particular, they must form an orthonormal basis in L2(R), i.

e., they must satisfy:

f M 10, otherwise.

For the orthonormality condition, it can be shown that the parameter a, and b, must be

chosen as a0 = 2 and bo = I which imply the dyadic scale [Ref. 1].

2- Multiresolution Analysis

The idea of multiresolution analysis was introduced by Mallat [Ref. 3]. In his

study, he used this approach to construct orthonormal wavelets. Assume that the original

signal x(t) is measurable and has finite energy. We successively decompose x(t) into

6



approximation and wavelet coefficients. This decomposition is done by convolving x(t)

with the scaling and wavelet filters.

Multiresolution analysis consists of a set of closed subspaces

{Vm 1 O>m>_M} M _ L 2(R), where we express the resolution level of the original signal

at m=O and the lowest resolution level at m=M [Ref. 5]. The subspaces share certain

properties:

"* Causality : The vector space Vm ., of resolution level m+1 is a subset of the vector
space V,' of the upper resolution level (M).

,- coarser ... C Vm+I C V, C Vm.- C ... finer

"* Completeness: The vector spaces must satisfy the following operations:
U.Vm = L2(R) n vI = {01.

"* Scaling: The spaces of approximated signals can be computed by scaling each
approximated signal by the ratio of their resolution values, i.e., if x(t) E Vm, then
x(2) E= V 1..

"* Orthogonality: V,,,- = V,I' Win, where W, is the orthogonal complement of V1'
in V,,,- , i.e., Vm I Wn. In other words, Vm,- is equivalent to Vm plus some added
detail corresponding to Win. Furthermore, this property and the causality property
together imply that the direct sum of all W, spans L2(R):

S=W ,ID ... (2.9)

We associate the scaling function 0(t) with Vm, and the wavelet function ib(t) with

Wi. We can warte 0(t) as:

*(t) = 2_ h(n) €(2t-n), (2.10)

and similarly we can express J(t) as:

7



(t) = 2E g(n) * (2t-n), (2.11)
n

where the coefficient set h(n) is the unit impulse response of a lowpass filter while g(n)

is the unit impulse response of a highpass filter. The filter g(n) is derived from h(n) by:

g(n) = (- 1)"h(1 -n) . (2.12)

The filters, h(n) and g(n), must satisfy certain conditions for a perfect reconstruction,

[Ref. 14]; namely:

,E h(n) = 1 (2.13)
n

E h (n) = 1(2.14)

n 2

2E h(n-2m)h(n-2k)=-(m-k). (2.15)
n

The wavelet filter, g(n), must also satisfy Eq. 2.14 and 2.15, but in place of Eq. 2.13,

g(n) must satisfy:

Sg(n) =0. (2.16)
n

From the orthogonality condition, h(n) and g(n) together satisfy the following equations:

2 , [h(m -2n)h(k-2n) +g(m -2n)g(k-2n)] = 5 (m -k) (2.17)
n



h(n-2k)g(n-2m)=O. (2.18)

Equation 2. 10 through 2.18 describe the essential properties of these functions.

C. DISCRETE WAVELET TRANSFORMS

The discrete wavelet transform (DWT) was developed for processing discrete-time

signals [Ref. 3, 41. The DWT consists of a series of identical operation blocks with both

time and dilation/translation parameters in discrete form. In this section, we start with

the DWT for the I -D case and then extend it to the 2-D case.

1. One-Dimensional DWT

The one-half resolution approximation of a discrete signal x(n) can be

obtained by convolving it with a lowpass filter followed by subsampling by two. This

forms the basic procedure for decomposing the original sequence into lower resolution

levels. At the same time, convolving the sequence at each level with a highpass filter

gives us the wavelet coefficients. Figure 2.2 depicts the pyramidal decomposition scheme

of the DWT while Figure 2.3 shows the operations at a given resolution level. Each

block in Fig. 2.2 performs the following operations:

"* Convolution with the argument filter, h(n) or g(n).

"* Subsampling (decimation) by two.

"* Normalization by V/2.

The wavelet coefficients are the ones we need to save in order to reconstruct the original

signal. We also need to save the approximation coefficients of the lowest level, M. In

9



other words, the DWT representation of x(n) consists of the coefficient set: {x,, din,

n =1... ,M}.

a. Decomposition

Given a discrete time sequence x(n) E L2 (R), the approximation

coefficients are computed recursively from:

xM+i(n)=iV/2 h(k-2n)xm(k); m=0,1...,M- (2.19)
k

where xm(n) is the signal at resolution level m; xo(n) is the original signal. This operation

is equivalent to lowpass filtering of xm(n) followed by subsampling by two. Consider an

FIR structure for the filter, h(n). The filtering operation in Eq. 2.19 can be represented

as a matrix vector product:

Xmi :ý:/Hxm (2.20)

where

H . h(L-1) h(L-2) ... ... h(O) 0 0 (2.21)

0 0 h(L-1) h(2) h(1) h(O)

and x. = [xm(-1), xm(O), xm(1), .T. The matrix, H, must satisfy the condition [Ref. 41:

2HHT =1 (2.22)

10



g(n) d 1(n)

x (n) g(n) d fn)

h-n g(n) .d in)

h(n) h) (n)

- h(n) x.n

Figure 2.2 General Decomposition Algorithm of DWT

_______ Xm+ilfn)
H

Xr4n)

Xm~n)(n)

Figure 2.3 One-Step Decomposition Algorithm
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where I is the identity matrix, and (.)T stands for the transposition operation. Notice the

similarity between Eq. ? 22 and Eq. 2.14. Using the same algorithm with the wavelet

filter gives us wavelet coefficients of lower resolution level:

d÷, 1(n) =v• g(k-2n)x.(k), (2.23)
k

where the coefficient set g(n) is defined by Eq. 2.12. If we build a matrix, G, in a form

analogous to Eq. 2.21, we have:

2GG r=T, (2.24)

and

HG T=O (2.25)

which follows from Eq. 2.18

b. Reconstruction

We know that the subspaces in which the signals are represented satisfy

V.I = V,,, ( W,,,. This implies that we can reconstruct each higher level by adding the

projections from the two orthogonal subspaces of the current level. The projections of

a sequence onto V,, and Wm are given by:

Xm, = 2H THx,1  and d,, =2G rGx,. (2.26)

From Eq. 2.9 and 2.25 the projections are orthonormal and span complete subspaces.

Thus, from Eq. 2.26 and the relation x. = Xm + dZ., we have:

12



2[HTH+GTG]=J (2.27)

The reconstruction algorithm is depicted in Fig. 2.4 and has the form:

xm- (n) =v/E [h(n-2k)x,(k) + g(n-2k)dm(k)]. (2.28)
k

This formula is derived as follows, substituting Eq. 2.19 and 2.23 into Eq. 2.28 and

taking Eq.2.17 into consideration, we observe that the righthand side of Eq. 2.28

becomes:

ý_2' [h(n- 2k)x.(k) +g(n-2k)d,(k)J

kk =V•Y (h(n -2k)[Jv/J h(j-~2k)Xm_-(S')1l+g(n -2k)[V•., g(j -2k)x,,_1 (i)J1

=21: [h(n -2k)h(j -2k) +g(n -2k)g(j -2k)Jx, -_(f)

k j

=Xml(n).

(2.29)

This completes the set of formulas needed for the one-dimensional DWT.

2. Two-Dimensional DWT

We now extend the one-dimensional DWT to the two-dimensional case. This

can be done by using multidimensional extensions of wavelets. Assume that we have a

set of subspaces Vm, satisfying the multiresolution conditions described in Section B.2.

Then, we can define a vector space Vm as the tensor product of these subspaces in L2(R2):

V=v v. (2.30)

If 0k(t,) is a one-dimensional scaling function of Vm', then we can derive the

corresponding separable two-dimensional scaling function as:

13



X ,m (n)H 

T 

x _n

d (n) T

Figure 2.4 One-Step Reconstruction Algorithm.

0(tlt 2) =4(t1 )(t 2). (2.31)

Similarly, two-dimensional wavelets can be obtained as:

,l(t Pt2)=V(t)•(t2)1 (2.32)

T2(tl2)=0(tl)4t2), (2.33)

,FV3(t 1 ,t2) =0)(t0)4(t 2). (2.34)

These functions are orthogonal to each other (follows from the orthogonality of one-

dimensional components). Table 2.1 summarizes the two-dimensional basis functions and

coefficients as well as their frequency characteristics. [Ref. 1, 3]
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Table 2.1 SUMMARY OF BASIS FUNCTIONS.

Basis Coefficients Frequency
Functions Characteristics

(t1,t2) I x(n 1 ,n,) Vertical Lowpass
Horizontal Lowpass

I' '(t J,2) d'1 n(n1 ,n2) Vertical Lowpass

Horizontal Highpass

'I'(tl.t,) d2,.(ni,n,) Vertical Highpass
Horizontal Lowpass

'(t,) d(n,n) Vertical Highpass
Horizontal Highpass

a. Decomposition

We can obtain the approximation, x,(n,,n.), and wavelet coefficients,

d,,(nn.), i=1,2,3, by convolving the approximation coefficients of higher resolution

level by the horizontal and vertical scaling and wavelet filters:

x.. 1(n,,n 2) =2' E X.(k,1)hh(l-2n 2)h,(k-2n,), (2.35)
k I

d,.'.(nn 2) =2E E x,.(k,lbh,(l-2n 2)g,,(k-2n,), (2.36)

k I

d 2.(n,,n 2) =2E_ E xj~k,1)g,(l-2n 2)h,,(k-2n,), (2.37)

k I

d,..j(n,,n,)=2 '•. x,(k,l)gh(l-2n2)g,,(k-2nl). (2.38)
k I

The procedure for 2-D decomposition is depicted in Fig. 2.5. Here, we have two levels

of I -D decomposition: one is convolution with a horizontal basis filter in the horizontal

15



direction (for example, rows of an image) and the second is convolution with a vertical

basis filter in the vertical direction (for example, columns of an image).

b. Reconstruction

The reconstruction algorithm follows the same procedure of matrix

multiplication in horizontal and vertical directions as in the decomposition scheme (see

Fig. 2.6). In analogous to Eq. 2.25 and 2.27, we have:

TTT T T T (2.392[H, Hh HhH,,+G~, H HhG,+H, G.A GH, +G, Gh GhG,, =I 2.39)

The reconstruction algorithm in Fig. 2.6 can be expressed in matrix notation as:

T T T T I T Tr2 T Td3 (2.40)Xm=2H, H +2G Hhmd.I+2Hv Gh d,.12Gv,,h•h d.I. (

Substituting Eq. 2.35 through 2.38 into Eq. 2.40 and using the property of Eq. 2.39, we

can show that:

T T T T I T T 2 T T 32HV HAxm.I+2G, Hh d.'. +2Hv Gh d. +2G, Gh d• ,
T T T T:2H,'Hi, [HhHvx,, + 2G.. H), [HGvx,,] (2.41)

+2Hr GhT[GhH-,,X, +2G, Gr[GhG,G,x.
=X

m"

The quality of reconstruction in both the 1 -D ar.d 2-D cases depends on

the precision of the filter coefficients. If we use the Haar filter ( h =[O.5 0.5]), we do not

introduce any reconstruction errors. For other filters, such as Daubechies filters, it is

possible to have some errors in the reconstructed signal because these filter coefficients

require infinite precision [Ref. 2]. In practice, however, 'he resulting error is still

insignificant (around 10.6 for our signals).
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D. BIORTHOGONAL WAVELETS

We prefer to use short filters for fast computation and because fewer redundant

samples are caused by the convolution. Short filters do not provide adequate smoothness

however. For image analysis, linear phase filters are preferred [Ref. 4]. In order to have

filters of arbitrary length with linear phase, we have to sacrifice orthogonality [Ref. 4].

The solution to this problem is to use filters based on a special class of functions called

biorthogonal bases.

Biorthogonality requires use of different filters for analysis and synthesis operations

with the decomposition and reconstruction algorithms described in Section B of this

chapter. Figure 2.7 shows a one step decomposition and reconstruction scheme using

biorthogonal filters. The conditions for perfect reconstruction are satisfied by imposing

orthogonality separately over the decomposition and reconstruction stages [Ref. 4]. Using

the matrix notation we have used in Eq.2.21, we have:

HoG1 =GoH1 =0, (2.42)

2HoH1 =2GoGl =I. (2.43)

Given the analysis and synthesis scaling filters, ho(n) and h,(n), the corresponding

wavelet filters are expressed as:
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go(n) =(-1)"h/I(1-n), (2.44)

g,(n) = (- 1)"h 0(1 -n). (2.45)

Notice the similarity between Eq. 2.25 and Eq. 2.42, and Eq. 2.22 and Eq. 2.43 (in the

orthogonal case H, =HoT and G, =GOT). Finally, perfect reconstruction in biorthogonal

bases requires:

2[HIH0 +G1 Go] =L (2.46)

The biorthogonal DWT algorithm for one-dimensional signals can be easily

extended to the two-dimensional case by using biorthogonal filters in the vertical and

horizontal directions.
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M. VECTOR QUANTIZATION

A. INTRODUCTION

Vector quantization (VQ) is generalization of scalar quantization where a scalar

value is represented by one of several discrete levels. In vector quantization a vector

quantity is represented by one of several other fixed vectors which are close to the

original vector in some sense. According to Shannon's rate distortion theory, better

results are always obtained when vectors instead of scalars are encoded [Ref. 151. As the

vector dimension becomes large, VQ can approach the rate distortion limit for the

problem. In typical applications, bit rates of lower than one bit per sample are achievable

with vector quantization; these rates are unlikely for scalar quantization.

B. QUANTIZER DESIGN

Vector quantizers map vectors in a multidimensional space into a finite set of

reproduction vectors called the codebook. The codebook is then used to encode and

decode the data set. Figure 3.1 shows a schematic of a basic vector quantizer. The

encoder quantizes blocks of the discrete time signal x(n) by using the codebook

constructed previously and encodes it into a sequence of bits {bj}, which is then

transmitted through the transmission channel or stored in some storage medium. If there

are no channel errors, then {b, '} = {b,}. At the receiver end, a decoder converts the

sequence of bits {b, '} into a vector representing blocks of data and thus into the signal,
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Figure 3.1 Basic Structure of Vector Quantization.

s(n). The output s(n) is the reconstructed signal, which will be an approximation of the

input signal x(n).

Given the basic structure of VQ, we now proceed to discuss the details of VQ.

Assume that x=[x,, X2, .. , xN]r is an N-dimensional vector whose components

{x,, 1 t_ k : N} are real and continuous (amplitude) random variables. Specifically, the xk

represent data samples in a block of data from the signal x(n). A vector quantizer maps

x into another real-valued, discrete-amplitude, N-dimensional vector y. This operation

can be described as:

y = q(x), (3.1)

where q(.) is the quantization operatot. The reproduction vector y is chosen from a set

of vectors M={y1, 1•<i<•L}, where y,=[yj, Yi2z ..... yINr. The set M is called the

codebook, where L is the size of the codebook. The quantity
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R=logL (3.2)

is the rate of the quantizer in bits per vector while r=R/N is the rate in bits per sample

(or bits per pixel if the input is image data). To design a codebook, we partition the N-

dimensional space of input vectors x into L cells {C,, 1 : i <L} and associate a vector y,

with each cell Ci. Then we use the code vector y, to represent vectors that fall within cell

C,, that is:

q(x) =y,, if XeCi. (3.3)

The vector quantizer is said to be a minimum-distortion quantizer if some measure

of distortion is minimized over all code vectors. The measure of distortion is defined in

terms of a distortion function, d(x,y), which represents the cost of representing any input

vector x by a code vector y. Although there are many possible distortion measures [Refs.

6, 8], we choose the mean-square error (MSE):

IN
d(x,y) = -1 E (xk -yk)2 (3.4)

due to its simplicity and mathematical tractability. This distortion measure is simply the

squared Euclidean distance between x and y.

To design an optimal (minimum-distortion) quantizer using this distortion function,

there are two necessary conditions [Ref. 7]. First, the quantizer must satisfy the nearest

neighbor condition:
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q(x) = yi, Wff d(x,y) •.d(x,y1 ), j*i, I •j•L. (3.5)

That is, for each i, all input values that are closer to code vector y, than to any other

code vector should be assigned to cell C,. Therefore:

d(x,q(x)) = mind(x,y)). (3.6)
YJEM

Secondly, the code vectors y, must satisfy the centroid condition; each code vector y, is

chosen such that y, minimizes the MSE in cell C,. In this case, it is easily shown that:

y, = cent(C). (3.7)

where:

cent(C) = x(3.8)

for all of the vectors {x,, k=], 2, .... K} contained in cell C,.

Based on the conditions defined above, an iterative procedure can be defined to

optimize the quantizer starting from an arbitrary set of code vectors. The iteration takes

place until convergence is obtained. The algorithm used is the generalized Lloyd (GL)

algorithm [Ref. 81 also known as the LBG (Linde,Buzo,Gray) algorithm [Ref. 9]. The

algorithm is detailed as follows :

"* Step 1 (Initialization): Set m=l. Choose an initial codebook M1.

"* Step 2 (Classification): Given the codebook M,, classify the set of training vectors
{xk, 1 <k<L} into cells C, according to the nearest neighbor condition.

"* Step 3 (Updating): m•-m + 1. Update the code vector y, of each cell C, by the
centroid condition (see Eq. 3.7).
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* Step 4 (Termination Test): Compute MSE for Mm+,. If it has changed by an
amount less than a prespecified value, stop; otherwise, go to Step 2.

A flow chart for this algorithm is shown in Fig. 3.2.

The algorithm above requires an initial codebook for the first step. There is a

variety of techniques available for generating the initial codebook (see Refs. 6 and 8 for

different methods). In this work, we choose the random coding technique. Given a set

of training vectors, this method randomly selects L code vectors. Once the initial code

vectors are selected, the GL algorithm is performed to improve the codebook. If an

initial code vector y corresponds to a cell where there are no training vectors, the empty

cell problem arises. In this thesis we assume that a cell is empty if it has three or fewer

training vectors. If an empty cell arises, we split the code vector with the highest number

of training vectors into two code vectors for that particular cell and repartition the cell

into two cells. The empty cell is then discarded. This algorithm forms Step 2

(classification) of the GL iteration (see Fig. 3.3). The criterion to terminate the iteration

in Step 4 (Figure 3.2) is based on the change in MSE, which is computed as:

A(MSE) = (3m.)
D

where Dm=d(x,y) for iteration m.

The quantization procedure described here is known as full search VQ (FSVQ)

since all code vectors are tested for quantizing each input vector. Other methods of VQ

exist (see Refs. 6 and 8), but were not explored in this thesis.
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IV. ALGORITHM DEVELOPMENT FOR SPEECH DATA AND ANALYSIS

A. INTRODUCTION

The previous two chapters provide an overview of discrete wavelet transform and

vector quantization. In this chapter we combine these concepts to develop algorithms for

speech waveform compression. We also include a test case for transient signal

compression in the last section.

The method used here is known as analysis-synthesis coding. It has been commonly

used in subband coding and other transform coding techniques [Ref. 8, 161. This method

analyzes the signal into components that in some sense provide a more primitive

representation of the signal, and quantizes these components. The quantized components

are then used to synthesize a reproduction of the original signal. Figure 4.1 illustrates

the basic steps of this algorithm. Notice that Figure 4. 1 is a modified version of Fig. 3. 1,

where we directly quantize the original signal without decomposing it into components.

In this study, the DWT is used for analysis-synthesis operations while vector

quantization is the method chosen for encoding the wavelet coefficients. The DWT

provides a set of wavelet coefficients for each resolution level. Each set of coefficients

has different statistical characteristics, and by designing a quantizer for each coefficient

set optimally, the quantization error can be reduced. This error reduction at each level

results in an improvement in the quality of reproduction of the original data.
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Figure 4.1 Analysis-Synthesis Coding Scheme.

In the following sections we develop algorithms for speech data based on the

analysis-synthesis coding scheme. We also present the experimental results of the

algorithm and comparisons of this method with direct vector quantization (DVQ).

B. ALGORITHM DEVELOPMENT

The analysis stage for speech data consists of a four-level DWT decomposition.

Here, DWT decomposes the speech data into four sets of wavelet coefficients, {dm,

rn=1,..., 4}, and one set of approximation coefficients, x, defined with Eq. 2.23 and

Eq. 2.19, respectively. From this point on we call the combined set of coefficients {x4,

and d,,, m=] ... , 4) the wavelet coefficients for convenience. Figure 4.2 shows the
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Figure 4.2 Division of Frequency Domain for DWT.

division of the frequency spectrum for each resolution level. At each resolution level, the

lower band is divided into low and high frequency bands and subsampled in the time

domain by two as explained in Chapter II, Section C. The scaling filter, h(n), that we

have chosen for the DWT is Daubechies 10-tap filter listed in Ref. 2. The wavelet filter,

g(n), is derived from the scaling filter by Eq. 2.12.

The next step after obtaining the wavelet coefficients is to construct the codebooks

for each set. The sizes of the codebooks are determined by the number of bits allocated

for each codebook. The bit allocation is a major concern in the design of a coding

system. It consists of distributing a given quota of bits to various quantizers in order to

optimize the overall coder performance [Ref. 8].
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1. Optimum Bit Allocation

Fewer bits can be allocated to the high frequency components than to the low

frequency components since the corresponding coefficients usually have a smaller

variance. It is also possible to discard all coefficients at a given resolution level, "n, if

the normalized energy:

2

E(d.) =- - (4. 1)

n

in that level is less than a predetermined threshold value. The threshold value is

determined such that a coefficient set with low energy level does not have a significant

contribution to the reproduction of the original data. Discarding some coefficient sets by

this approach allows us to allocate more bits to encode the coefficients at other levels

with significant energy values.

While the energy E(d, is used as a threshold to select the desired wavelet

coefficient sets, the variance of the corresponding wavelet coefficients is used in bit

allocation calculations. Let B represent the desired average number of bits per vector,

and ar 2 be the variance of the wavelet coefficients at resolution level m. Then the optimal

bit assignment is given by [Ref. 8]:

21 o__.m
B+ 210g2 p2 (4.2)

bm =

m W
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where

K
2 =(H Ilk (4.3)

m=1

is the geometric mean of the variances of the wavelet coefficients, and the parameter W,,

is defined as the ratio of the number of coefficients at resolution level rn, L., to the

number of samples in the original signal, L,:

L
W =-P0 (4.4)

The number of coefficients, Lm, at resolution level m is ,iven as:

Lm [mf' (4.5)

where F is the filter length, and L.] represents the floor operation.

In practice, this bit allocation method does not guarantee integer bit

assignments; moreover, it does not exclude the possibility of negative bit allocation. We

eliminate the negative bit allocation problem by replacing negative values by zero.

Noninteger bit assignments are adjusted to the nearest integer.

2. Vector Quantization of Wavelet Coefficients

The energy distribution of speech data over the wavelet coefficients has

certain similarities. For a four-level DWT decomposition, the energy is typically

concentrated in the wavelet coefficients at resolution levels 3 and 4, d3 and d4, while the

wavelet coefficients d, and x4 have relatively less energy. Figure 4.3 shows the energy
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Figure 4.3 Energies of Wavelet Coefficients.

distribution of wavelet coefficients of a sample speech data. As the energy levels of d,

and x4 are low compared to those of d3 and d4, we discard the wavelet coefficients d, and

x4 by replacing them with zeros. (The threshold was set at E(d,,)=0.06.) The quality of

the reproduced speech indicates that these coefficients (d, and x4 ) do not have a

significant contribution in the reproduction.

Having determined the coefficients to encode, there is another problem to be

resolved: the small size of training sets at lower resolution levels. Equation 4.5 indicates

that the total number of samples decreases by approximately a factor of two with each

resolution level; furthermore, this implies that the size of the training set for that

particular resolution level shrinks accordingly. One way to compensate for this effect is

to use a large number of samples in the original data. However, in some cases, such
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large data sets may not be available. Instead, we use the following technique to extend

the data sets at low resolution levels. Consider the resolution level m, where we have

roughly half the number of samples as at resolution level m-1 after carrying out the

DWT. We now shift the data at level m-1 by one sample and repeat the DWT

decomposition for the shifted data. This gives us a second set of coefficients for

resolution level m. By combining the two sets of coefficients, we double the number of

coefficients at resolution level m. The resulting increase in the training set size offsets

the decrease caused by subsampling.

The next step is to construct the codebooks by using the training data sets

obtained by the procedure outlined above. The sizes of codebooks are determined by the

bit allocation algorithm described in Eq. 4.2. The wavelet coefficients at selected

resolution levels are then encoded by using the corresponding codebooks. In order to

reconstruct the original data, we decode the wavelet coefficients by using the same

codebooks and take the inverse DWT. Here, we substitute zeros for the discarded

wavelet coefficients.

C. SIMULATION RESULTS

In this section we study the performance of the wavelet transform coding (WTC)

using speech data. Simulations wert. carried out by using two data sets:

"* A training sequence of 104100 samples of ordinary speech from three different
speakers sampled at 8 kHz.

"* A test sequence of 20330 samples from a speaker not in the training sequence.
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The test sequence was also encoded by DVQ for comparison. We kept the average bit

allocation at B=2 bits per sample (bps) (see Eq. 4.2) and changed the vector size to

obtain different bit rates. The codebook sizes for wavelet coefficients are listed in

Table 4. 1. The distortion criterion defined in Eq. 3.9 for the GL algorithm was set at

0.01. The performance of the quantization was measured by using a signal-to-noise ratio

(SNR) defined as:

SNR = 10 1oglE(x2 ) dB (4.6)
D

where E(x2) is the signal power and D is the mean-square error between the original and

reconstructed signal. The signal power is the estimated variance, a., , of signal samples

assuming that the input has zero mean.

Table 4.1 CODEBOOK SIZES FOR WAVELET COEFFICIENTS

Wavelet Coefficients

d, d2  d, d, x,

Codebook 0 8 64 512 0
Size

The performance of WTC in terms of SNR vs. bit-rate (bits per sample) is

plotted in Fig. 4.4 as the solid line. The dotted line represents the performance of DVQ.

Clearly, WTC is superior to DVQ with a SNR improvement of between 19% and 55 %,

from 0.18 bps to 1.0 bps. Figure 4.5 shows a segment of original test sequence.

Figure 4.6 shows an encoded example with a bit rate of 0.18 bps and an SNR of 3dB.

The overall quality is fairly good and the speech is understandable. The same speech
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Figure 4.4 SNR vs. Bit Rate: Speech Data. The solid line represents WTC while the
dotted line represents DVQ.

segment encoded by DVQ is shown in Fig. 4.7. The bit rate was 0.18 bps and SNR was

2.5dB. Although the SNR values of WTC and DVQ are fairly close, the smoothing

capability of WTC renders the speech more understandable. Figures 4.8-4.9 show the

reproduced speech segments encoded at bit rates of 1.03 bps for WTC and 1 bps for

DVQ. Table 4.2 summarizes the bit rates and the contribution of each wavelet coefficient

set to the overall distortion.
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Figure 4.6 Test Speech Coded by WTC at 0.18 bps, SNR = 3.0 dB.
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Figure 4.7 Test Speech Coded by DVQ at 0.18 bps, SNR = 2.5 dB.
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Figure 4.9 Test Speech Coded by DVQ at 1.0 bps, SNR = 6.2 dB.
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Table 4.2 BIT ALLOCATIONS AND MSE CONTRIBUTIONS OF WAVELET
COEFFICIENTS FOR AN AVERAGE BIT RATE OF 1.03 BPS.

Wavelet Coefficients

d,  d.,_d_ d, x,
Bit Rate (bps) 0 0.3760 0.3774 0.2853 0

MSE 0.0006 0.0021 0.0067 0.0020 0.0154

Interestingly, given an average number of bits, B, the performance of WTC

increases rapidly over the performance of DVQ when we use smaller vector dimensions.

(Recall that we use larger vectors to obtain small bit rates in Fig. 4.4.) This is caused

by the effect of correlation between samples. At lower levels, the wavelet coefficients

become less correlated and result in less degradation of quality for small vector

dimensions.

We have, additionally, tested the WTC algorithm for coding transient signals. For

the simulation study, a transient signal of 2400 samples was utilized. Since the energy

levels of the wavelet coefficients, x4 and d4, were low compared to those of d,, d 2 and

d3, a three-level DWT decomposition was chosen to analyze the original signal. Among

the four sets of wavelet coefficients (x, and di, i = 1, 2, 3), x3 was discarded due to its

low energy level (see Table 4.3), and the bit allocation algorithm in Eq. 4.2 was applied

to the coefficients, d,, d2 and d3, keeping the average number of bits at B = 2. Table 4.3

shows the codebook sizes for the different resolution levels as well as the energy levels

of the wavelet coefficients at those resolution levels.
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Table 4.3 ENERGY LEVELS AND CODEBOOK SIZES OF WAVELET

COEFFICIENTS OF TRANSIENT SIGNAL

Wavelet Coefficients

d, d 2  d 3 [,

Energy 0.0690 0.8152 0.1030 0.0140

Codebook Size 2 16 8 0

As in the case of speech waveform coding, the test signal was coded by both WTC

and DVQ to allow good comparisons. The vector dimensions were changed to achieve

varying bit-rates in terms of bits per sample. The original signal is shown in Fig. 4. 10.

Figure 4.11 shows the signal coded by WTC at 1.0 bps. The same test signal coded by

DVQ at 1.0 bps is displayed in Fig. 4.12. The SNR of the WTC-coded signal was 7.1

dB while the SNR in case of DVQ was only 3.9 dB. The WTC reproduces the transient

signal better because it decomposes the original signal into different resolution levels

corresponding to different frequency bands. Also, the DVQ does not contain a sufficient

number of code vectors to represent the changing structure of the transient signal well.

The improvement realized by WTC is confirmed by the SNR performance displayed in

Fig. 4.13,

For the two test cases (speech waveform and transient signal coding), the

improvement in the performance of WTC over DVQ in terms of SNR varied from 19 to

84 percent. As stated before, this advantage is a result of utilizing different codebooks

to quantize the wavelet coefficients at different resolution levels and also of discarding

components that do not contribute to the reproduction of the original signal.
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Figure 4.10 The Original Transient Signal.
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Figure 4.11 Transient Signal Coded by WTC at 1.0 bps, SNR = 7.1 dB.
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Figure 4.12 Transient Signal Coded by DVQ at 1.0 bps, SNR = 3.9 dB.
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V. ALGORITHM DEVELOPMENT FOR IMAGE DATA AND ANALYSIS

A. INTRODUCTION

In this chapter we extend the algorithm developed in the previous chapter to the

two-dimensional case. The algorithm consists of the same operations illustrated in

Fig. 4. 1. The following sections provide a detailed overview of the algorithm and the

simulation results.

B. ALGORITHM DEVELOPMENT

The analysis step of the proposed coding method includes a three-level DWT

decomposition in two-dimension as illustrated in Fig. 5. 1. A three-level instead of a four-

level decomposition as used in the speech waveform coding was chosen because the

correlation between coefficients of an image at lower resolution levels decreases

significantly, and this makes encoding the wavelet coefficients at those levels extremely

difficult. Table 5.1 shows the varian-,es of the wavelet and approximation coefficients at

different resolution levels. Notice the increase in variance of x4 at the fourth resolution

level. One way to compensate the effect of increase in variance would be to use more

bits in that particular resolution level. But, using more bits increases the computational

cost involved in generating the codebook and finding the closest codeword for each

vector; thus, we stop the decomposition at the third resolution level.
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Figure 5.1 Three-level DWT Decomposition.

Table 5.1 VARIANCES OF WAVELET COEFFICIENTS (10)

Resolution Levels

1 2 1 3 4

x 0.8504 4.4047 23.5356 116.6700

d, 0.0126 0.0495 0.4595 4.2170

d, 0.0050 0.0439 0.3668 2.5067

d3  0.0008 0.0073 0.0674 0.4239

As we mentioned in Section D of Chapter II, we would like to have short wavelet

filters, and we also prefer to use filters with linear phase characteristics. By relaxing the

orthogonality and choosing biorthogonal basis functions, it is possible to use linear phase
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filters. Throughout the following experiments, we used the 7-tap biorthogonal filters

listed in Table 5.2 which are short and have linear phase.

Table 5.2 7-TAP BIORTHOGONAL FILTER COEFFICIENTS

"n Analysis Filter (ho) J Synthesis Filter (h,)

0 0 0.607142857143

+1 -0.05 0.260714285714

+2 0.25 -0.053571428571

+3 0.60 -0.010714285714

1. Optimum Bit Allocation

The three-level DWT provides 10 sets of wavelet coefficients {Xj, d",, m, i

S1, 2, 3} for quantization. Figure 5.2 shows the average energy distribution of wavelet

coefficients of sample images; the energy of x3 is not shown to scale in order to make

other energy bars visible. (The actual value for x3 is shown on top of the corresponding

bar.) As can be seen, most of the energy is concentrated in x.; the energies contained in

the other coefficients are much smaller. Using the bit allocation scheme defined in the

previous chapter leads to a problem because of this uneven energy distribution and the

high variance of x3 (See Table 5. 1); all bits are assigned to wavelet coefficients x3 leaving

no bits to represent the other wavelet coefficients. If we discard the other coefficients and

encode only x3, this causes another problem. The edge information of the image is mostly

contained in these coefficients, and the edges in the image are lost if we discard all of

these coefficients. In order to allocate some bits to quantize din, we first reserve a large

number of bits for x3 taking the computational cost into account and share the remaining

44



0.012
dl

0.011 d2 0.9869

0.01

0.009 d3

0.008

0 007

0.006

0.005

0.004

0.003

0.002

0.001 1..

Level 1 Level 2 Level 3

Resolution Levels

Figure 5.2 Energy Distribution of Wavelet Coefficients Normalized to the Original
Signal at Resolution Level m=O.

!)its among dm by using the bit allocation algorithm of Eq. 4.2. The wavelet coefficients

d,, and d., are discarded due to their low energy values. Keeping the average number

of bits at B =1 bit per vector, we reserve 11 bits for coding of x3 and allocate the

remaining bits to the rest of the wavelet coefficients. Table 5.3 shows the bit allocations

for all wavelet coefficients.

Table 5.3 BIT ASSIGNMENTS TO WAVELET COEFFICIENTS

Wavelet Coefficients

d', d2, d3
1  d', d2

2 [d 3
2  d'3 I d2

3 I d3
3  x3

Ci[eookSizeI0o 0 0 3 3 0 8 8 4 11
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2. Vector Quantization of Wavelet Coefficients

Given the number of bits for each set of wavelet coefficients, we construct

the codebooks by using the GL algorithm. In order to compensate for the decrease in the

number of coefficients at lower resolution levels, we use the same approach introduced

in Section C.2 of Chapter IV. Consider the signal at resolution level m which has

roughly one quarter of the samples of that at resolution level m-1. First, we decompose

the level mn-1 signal into wavelet coefficients. The resulting four wavelet coefficient sets

at level m are retained. Now, we shift the level m-1 data by one sample horizontally and

repeat the DWT decomposition. The resulting wavelet coefficients are combined with

those already obtained at level m to extend the training set. This same procedure is

repeated using vertical and diagonal shifts. The resulting data set at level m has roughly

the same size as that at level m-1.

After constructing the codebooks using the training data obtained as above,

we encode the wavelet coefficients using the corresponding codebooks. In the

reconstruction procedure, we substitute zeros for the discarded wavelet coefficients.

C. SIMULATION RESULTS

Simulations were carried out by using two images:

"* A training image of 512-by-512 pixels (Fig. 5.3) constructed from pieces of four
different images with a resolution of 8 bits per pixel (bpp).

"* A test image (Lenna) of 512-by-512 pixels shown in Fig. 5.4.

The test image was not contained in the training data.

46



The coding performance is measured by using the peak signal-to-noise ratio (PSNR)

defined as the ratio of square of the peak input amplitude to the mean square error, D,

[Ref. 81:

25 52
PSNR = l01og1 0 (- ) dB (5.1)

where:

D = d(x,y) E E (xV -Y;J)2N2&N

and N is the number of pixels along one side of the (square) image.

Figure 5.5 shows the performance of WTC in terms of SNR vs. bit-rate, in bits per

pixel. We changed the number of pixels in each vector to obtain different bit rates while

keeping the number of bits for each quantizer fixed as in Table 5.3. The test image was

also coded by DVQ for comparison. The dotted line in Fig. 5.5 represents the

performance of DVQ.

Figure 5.6 shows the WTC-coded test image at 0.25 bpp with an SNR of 27.37 dB

while Figure 5.7 shows the same image coded by DVQ at 0.25 bpp with an SNR of 20.7

dB. The performance of WTC is very good for a compression rate of 32: 1; however, the

picture quality is effected by blurred and jagged diagonal edges. This is caused by the

smoothing effect of the DWT, which produces a positive effect in speech coding. Using

vectors of small size helps to preserve the edges; Figure 5.8 shows the test image coded

hy WTC with a vector size of 2 pixels (0.5 bpp) and an SNR of 29.5 dB. The quality

of the coded image is nearly as good as the original.
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Figure 5.3 Training Image of 512x512.

Figure 5.4 Test Image (Lenna) of 5 12x5 12.
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Figure 5.5 SNR vs. Bit Rate: Image Data. The solid line represents WTC while the
dotted line represents DVQ.
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Table 5.4 illustrates the contribution of each wavelet coefficient set of Figure 5.8

to the overall distortion with the bit rates normalized by W,, (see Eq. 4.2 and 4.4). It is

interesting that the contributions of various wavelet coefficients to the overall distortion

are by no means equal. It ranges between MSE = 8.24 for d3, and MSE = 172.52 for

x.. Notice the high distortion in x3 despite the high number of bits per pixel used in the

allocation. This underscores the importance of allocating a large number of bits for the

codebook of x_.

Table 5.4 BIT ALLOCATIONS AND MSE CONTRIBUTIONS OF WAVELET
COEFFICIENTS OF THE IMAGE IN FIG. 5.8

d___d2 _ d31 d'2  d22

Bit Rate (bpp) 0 0 0 0.1013 0.1013

MSE 125.76 131.07 8.24 147.21 171.41

d3
2  d13 d2

3  d_3_ 3 X3

Bit Rate (bpp) 0 0.0748 0.0748 0.0374 0.1029

MSE 73.10 67.08 97.38 105.72 172.52

We also coded the test image by using different vector sizes. Since most of the

energy was contained in x., we used a vector dimension of 2 pixels for x. and 8 pixels

in each vector for the d coefficients. The codebook sizes were kept the same as in Table

5.3. The resulting bit rate was 0.2 bpp with an SNR of 27.15 dB. The reconstructed

image is shown in Fig. 5.9. A comparison of Fig. 5.6 and Fig. 5.9 shows that proper

use of different vector sizes can result in lower bit rates with better visual quality. We

say "btter visual quality" instead of "better SNR" because the quality of the image in

Fig. 5.9 looks superior to the one in Fig.5.6 although the SNRs are quite close.
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Figure 5.6 L.enna Coded by WTC at Figure 5.7 Lenna Coded by DVQ at
0.25 bpp, SNR =27.37 d.B. 0.25 bpp, SNR 20.7 dB.

Figure 5.8 Lenna Coded by WTC at Figure 5.9 Lenna Coded by WTC at
0.5 bpp. SNR =29.5 d.B 0.2 bpp by Using Different Vector

Sizes, SNR = 27.42 dB.
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For different simulations, the improvement in performance of WTC over DVQ in

terms of SNR ranged from 17 to 50 percent corresponding to bit rates of between 0. 16

and 0.5 bpp. The use of different vector sizes for different wavelet coefficients provided

better image quality compared to the case of uniform vector size for all wavelet

coefficients.
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VI. CONCLUSIONS

In this thesis, we combined algorithms for discrete wavelet transforms and vector

quantization to develop coding schemes for speech and image data. We studied wavelets

based on both orthogonal and biorthogonal bases; we used biorthogonal wavelet functions

for image coding since filters with linear phase are desired in image coding.

The algorithm developed for the discrete wavelet transform (DWT) has a pyramidal

decomposition architecture and is based on the convolution of data in each pyramid level

with wavelet and scaling filters. Unlike those in traditional Fourier theory, the basis

functions in the wavelet approach are formed by dilating and translating a single

prototype function. Given the coefficients of basis filters with infinite precision, the DWT

reconstructs the original data without any error.

Vector quantization was shown here to yield better performance when combined

with the DWT. The results as measured in SNR show that the performance has improved

by 17 % to 84 % over direct vector quantization (DVQ) depending on the number of bits

per sample and the type of data. In speech coding, we found that the subjective quality

of the coded speech was still superior to that using DVQ, even though the improvement

in SNR obtained by using the DWT was fairly small. This shows that SNR may not

always be a good measure of performance. We also tested the same algorithm on

transient signals. The performance of WTC in this case well exceeded that of DVQ.
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In image coding, we found that WTC outperforms DVQ for bit-rates around 0.5

bit per pixel (bpp). At bit-rates lower than 0.5 bpp, WTC suffered from blurred and

jagged edges although the performance was still better than DVQ. This problem also

existed for relatively high bit-rates, but it was not as predominant as it was at low bit-

rates.

The major coding gains are due to encoding vectors of samples (vector

quantization) and the use of different codebooks for wavelet coefficients at different

levels. Although using different codebooks increases the complexity and the

computational cost, this research has shown thai the VQ-DWT combination improves the

quality of the reconstructed data over that of DVQ for a given bit rate (bps or bpp).
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APPENDIX A: PROGRAM DETAILS

This appendix contains the program listings for each of the MATLAB algorithms

in the thesis. The codes are categorized into three classifications, I-D DWT, 2-D DWT

and VQ.

A. ONE-DIMENSIONAL DWT ROUTINES

function lowest= dwt I (cO,qqqLOW,fileqq)
% DWTI One-dimensional discrete wavelet transform
% DWTI(...) computes the wavelet coefficients of vector data CO
% by using a wavelet filter. It stores the wavelet coefficients
% in a file and returns the lowest resolution level that the data
% is processed. It also stores the filter banks to avoid
% rebuilding them in reconstruction process.
% CO = Input data in vector format
% QQQ = Wavelet filter type

% LOW = Lowest desired resolution level
% FILE = Output file containing the wavelet coefficients
% QQ = Filter tap

% Alper Erdemir
% June 1993

co =c0;

% Get the filter coeffients
% ----------------------------------------------------------------------

if qqq= = I
h =coiflet(qq)':
wwavelet=I'Coif_',num2str(qq)Il;

elseif qqq = = 2,

h = daubdata(qq);
wwavelet = I'Daub_',num2str(qq) 1;

else h=1.5 .51';wwavelet='HAAR';
end

% Normalize the filter coefficients
S----------------------------------------------------------------------
h = sqrt(2)*h:

% Intialize some of the constants:
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% -0-........ ----------------------------------...- ----------------------
LL = length(cO);
Nh = length(b);
lowest = -ceil(log(LL)/log(2));
if abs(lowest) > abs(LOW) Iowest=-abs(LOW); end

% Generate the g coefficients
% ......................................................................

g = flipud(b);
for i=2:2:Nh

g(I'l) =

end

WIN =256; % window size for data longer than WIN

"% The following code constructs the filter banks for the scaling
"% filter and the wavelet filter
% ----------------------------------------------------------------------

if LL < WIN
H = fltbnk(b,2*ceil(LL/2));
G = fltbnk(g,2*ceii(LL/2));

else
H = fltbnk(h,WIN);
G = fltbnk(gWIN);

end

% Decomposition routine
% ----------------------------------------------------------------------
for lvl=-l :-1:Iowest

IvI
eval([ c' ,num2str(abs(Ivl)), =dcmpl ','(c'....

num2str(abs(lvl)-l),',H,Nh,WIN);'I)
eval(I 'd',num2str(abs(lvl)),' =dcmpl','(c',...
num2str(abs(lvl)- I),',G,Nh,WIN);'I)

end

% Store the wavelet coefficients
% ---------------------.......----------------------------------------------
temp=II;
for n = I :abs(lowest)

eval(['temp=ltemp "d',num2str(n),' c',int2str(n),' '1;'!)
end
eval(I'save ',file,'_',wwavelet,' cO H G WIN wwavelet Nh ".templ)

% End of routine
% ---------------------------------------------------------------------------

function x fltbnk(filt, L)
"% FLTBNK Construction of filter matrices for DWT
"% FLTBNK(FILT,L) constructs the filter matrix using the filter FILT.
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% This routine is also used for 2-D DWT.
% FILT = Filter
% L = Length of data to be processed

% Alper ERDEMIR
% June 1993

F = length(filt);
Lc =L +2*F-4:
LI= (Lc-F)/2 + I1

x = zeros(LI,Lc),
for n= I:LI

x(n,:)=1zeros(1,2*(n-I)) filt' zeros(lLc-F-2*(n- ))I;
end

% End of routine
%-/...................................................... -------------------.

function x=dcmpl(data.F,IF,W)
% DCMPI One-dimensional DWT decomposition routine.
% DCMPI(...) conducts the DWT decomposition of the input DAIA
% by using the filter bank F with a window size of W.
% DATA = Input data
% F = Wavelet/Scaling filter matrix
% IF = Wavelet/Scaling filter length
% W window length for relatively long data

% Alper ERDEMIR
% June 1993

L length(data):
LF=IF-2;

"c The following four lines checks if the data vector is odd, if it is
"% true, then a zero is added to it.
%0 ----------------------------------------------------------------------

if rem(L/2,floor(L/2)) = 0
data = [data;01;
L=L+ I:

end

N = fix(L/W):
% Add LF zeros to the beginning and end of DATA
% ---------- -------- ----- ----------- ---- --------------------------------

data= Izeros(LF, 1 );data;zeros(LF, If)l

% Decomposition routine
%0 -------------------------------------------------------. --------------

LLL = length(data);
LL=(LLL-IF)/2+ I;
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if N > = I
LII =(W +2*LF-IF)/2 + I;
x(I:LII) =F( I:LII,I:W+ 2*1 P:)wdata I :W-÷2*LF):

L12 = (W +- LF-IF)/2 + I;
if N> =2

for n=I:N-I
x(LII +(n-l)*Ll2 + I: LII + *Ll2) F( I:LI2,1:W W--LF)...
*data(LF+n*W+ 1:(n+ I)*W.-t2*LF);

end
end

REM = rem(LW);
if REM - = 0
Lrem=(REM - LF-IF)/2+ I

x(LL-Lrem + I :LL) = F( I :Lrem, I :REM + LF)*data(LLL-REM-LF+ I :LLL);
end
X=X%

else
x - F(I: LL, I: LLL)*data:

end

% End of routine
% .---------------------------------------------------------------------------

function ses = idwt I (file)
"% IDWTI One-dimensional inverse discrete wavelet transform
"% IDWTI(FILE) returns the reconstructed data SES by
% taking the inverse wavelet transform of wavelet coefficients
"% stored in FILEDWT.

"% Alper ERDEMIR
% June 1993

% Lode the wavelet coefficients

eval(I'Ioad ".file.'_dwt"l)

% Start the reconstruction routine

eval(I'ses=c'.num2str(lowest).';'I)
FF=Nh-2;
FFF=floor((FF-1)/2 + I):
WINI = WIN-2*FF;
for IvI =-lowest: I:-I

L = length(ses);
WIN2 = floor((WIN 1 + Nh-l)/2),

N = fix((L-FFF)/WIN2);
eval(I "a = length(d',num2str(-Ivl- ),;")

if N= =0
Lu=(L-I)*2+Nh;

eval(I"dwork=G( I :L. I : Lu)"*d',num2str(-Ivl).';'j)
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sesv- H(lI: LI: Lu)'`ses-,dwork;
Lp = Iengthses)-Nh + 2;
ses~ses(Nh-2 tI:Lp);
ses =ses( la):

else
Lu-(WIN2-I)*2*Nh;
eval(I'dwork =G( I:WIN2. I:Lu)"*d*....

num2str(-lvl).'(l:WIN2):'I)
cwk( I: Lu)--H(l: WIN2.l: Lu)'*ses( I: WIN2) +dwork;

Lp - length(c wk)-FF:
cw-k cwk(Nh-2± l:Lp):
NN =Iength~cwk):
if N > -,2

Lu2 -Lu±+ FF;
WIN3=WIN2 r2*FFF;
for n ýl:N-lI

eval(I dwork =GOl:WIN3.lI:Lu2)"*d',....
num2str(-lvl).'((n-l )*'.V1N2-FFF+ WIN2 + I :n*WIN2 4 FFF+ WIN2);'I)

cwk2 H( I:WIN3. I :Lu2)'*ses(n*...
WIN2-FFF+ I :(n +t I )*W1N2 + FFF) +dwork;

Lp2 = length(cwk2)-FF;,
cwk(NN - (n-I 1)¶Lp2-FF) + 1: NN + n*(Lp2-FF)) =cwk2(FF4 I: Lp2.,

end
NN -- lengthtcwk):

end
RENM=- LN*WlN2:.
if REM - =0

Lreni = (REM-I )*2 + Nh;
evahl('dwork =G(1I:(FFF + REM), I :Lrem)"*d',....

num2str(-Ivl),'(L-REM-FFF + I:L);'I)
cwK2 -- 1-(1 (REM + FFF). 1: Lrem)'*ses(L-REM-FFF4 I: L) +dwork-,
Lp =r lengtb~cwk2);
c wk(NN + 1: NN + Lp-FF) =cwk2'(FF-~ I 1:Lp);

end
ses =cwk( a)';

end
end

% End of routine
% - -- -- -- -- - -- -- -- - - -- -- - -- -- -- -- -- -- - -- -- -- -- -- -

B. TWO-DIMENSIONAL DWT ROUTINES

function lowest =dwt2(cOflt.LOW~file~qq)
% DWT72 Two-dimensional discrete wavelet transform

'Ie DWT2( ... ) computes the wavelet coefficients of two-dimensior'RI
7c data CO by using a wavelet filter FLT in both horizantal and vertical

17 directions. It stores the wavelet coefficients in a FILE_ DWT and
%C returns the lowest resolution level that the data is processed.
% Both orthogonal and hiorthogonal dlecompostion can be done
ele by using appropriate filters.

C/C CO - Input data in vector format
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% FLT = Wavelet filter type
% LOW = Lowest desired resolution level
% FILE = Output file containing the wavelet coefficients
%/ QQ -- Filter tap

"% Alper Erdemir
"% June 1'993

"% Construct 2-D filter banks for decomposition
% -------------------- --- ----------------- -- ------------ ---------------------

I HH,HV.GHGVNh,NvI = filts2(cO,flt,qq. I);

% Determine of the lowest possible resolution level
% ---------------7----------------------------------------------------------

ILl L21 =size(cO):
rsl = min(ceil( log{Ll )/Iog(2)),ceil(log(L2)/Iog(2)));
lowest = abs(rsl);
if lowest > LOW

lowest = LOW;
end

% Decomposition routine
% ................................................. .. . . . . . . . . . . . . . .. .........

for lvJ = 1 :lowest
eval([ 'c',num2str(lvl),' =dcmp2(c',...
num2str(Ivl-l),',HHHV,Nh,Nv);'I)
eval({'dl ',num2str(lvl),' =dcmp2(c',...
num2str(vl-lI),'.HHGV,NhNv);'I)
eval(['d2',num2str(lvl),' =dcmp2(c',...

num2str(Ivl-l).'.GHHV,Nh.Nv);'I)
eval(I 'd3',num2str(ivl)' =dcmp2(c',...
num2str(Ivl-l),',GH,GVNh.Nv):'I)

end

% Store the wavelet coefficients
%-...........................................................
temp = I1;
for n= I lowest

for m= 1:3
eval(I 'temp = Itemp d',int2.,-(m),int2str(n),' '"I;'I)

end
eval(l'temp=Itemp "c',int2str(n),' "1;'I)

end
eval(I's'vc ',file,' dwt fit qq ",temp])

% End of routine
% ...........................................................................
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function IHHHV.GH,GV,NhNvl=filts2(cO,fltqq,dtr)
% FILTS2 construction of 2-D filter banks

% FILTS2 returns the 2-D filter matrices using horizantal and

% vertical wavelet and scaling filters. It also returns the filter

% lengths.The available filter types are Daubechies I- to 10-tap
% filters, Haar filter, and biorthogonal I- to 5-tap filters.

% CO = Input data in matrix format

% FLT filter type (for both directions;

% QQ - Filter tap

% DIR = Indicator for decomposition and reconstruction procedure
% (used for biorthogonal filters)

% Alper ERDEMIR
% June 1993

% Get the filter coefficient

% ----------------------------------------------------------------------
if fit = = I

Hh =daubdata(qq):
elself fit - = 2

HhI1.5 .51':
elseif fit = = 3

I Hh,Hh21 = biort(qq);

Hh = IOHh1;

Hh2 =IO:Hh21;

Hv2 = Hh2;

end

Hv =Hh: % Let vertical filter equal to horizantal one

Nh length(Hh);

Nv = length(Hv):

% Generate the g coefficients

S----------------------------------------------------------------------
if fit < = 2

Gh = flipud(Hh);

for i=2:2:Nh
Gh(i.1 ) = -Gh(i., );

end

Gv = flipud(Hv):

for i=2:2:Nv
Gv(i. 1) =-Gv(i. I):

end

else

if dir == I
Gh = flipud(Hh2):

for i=2:2:Nh
Gh(il) - -Gh.:

end
Gv - flipud(Hv2):

for i=2:2:Nv
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Gv(i. I) = -Gv(i, i);
end

else
Gh = flipud(Hh):
for i=2:2:Nh

Gh(.lI) = -Gh(il);

end
Gv = flipud(Hv);

for i-=2:2:Nv
Gv(i, I) = -Gv(i, I );

end
Hh-Hh2;Hv = Hv2;
end

end

IdrowO.dcolOI = size(cO);

% Construct the filter banks
% ---------------------------------------------------------------------

HH -sqrt(2)*fltbnk(Hh,2*ceil(dcolO/2)).
HV =sqrt(2)*fltbnk(Hv,2*ceil(drowO/2));
GH =sqrt(2)*fltbnk(Gh,2*ceil(dcolO/2));
GV =sqrt(2)*fltbnk(Gv,2*ceil(drowO/2));

% End of routine
% ...........................................................................

function x=dcmp2(dataFhFvIFh,lFv)
% DCMP2 Two-dimensional DWT decomposition Routine
% DCMP2(...) conducts the DWT decomposition of the input DATA
% by using horizantal and vertical filter banks, FH and FV,
% DATA = Input data
% FH = Horizantal wavelet/scaling filter matrix

% FV = Vertical wavelet/scaling filter matrix
% IF - Horizantal wavelet/scaling filter length
% IF = Vertical wavelet/scaling filter length

% Alper ERDEMIR
% June 1993

1 Lv Lh I = size(data):

% If the horizantal length of the data is odd, add a column of zeros
%/--------------------------------------------

if rem(Lh/2,floor(Lh/2)) - = 0

data=jdata zeros(Lv,1)[]
Lh = Lh + I';

end

% Add IFh-2 columns to left and rigth of the data
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%0

data = zeros(LvlFh-2) data zeros(Lv,lFh-2)I;

vlen=Lh+2*(lFh-2); % Width of the Hor. Filt. Matrix
hlen =(vlen-IFh)/2 + I; % Heigth of the Hor. Filt. Matrix

% Horizantal decomposition routine
%-

xh = (Fh( I :hlen, I :vlen)*data')';

% If the horizantal length of the data is odd. add a column of zeros
% ---------------------------------------------------------
if rem(Lv/2.floor(Lv/2)) - = 0

xh =Ixh;zeros( I ,hlen)I:
Lv=Lv+ I:

end

% Add IFh-2 columns to left and rigth of the data
%- ---------------------------------------

xh = I zeros(lFv-2.hlen);xh;zeros(lFv-2,hlen)l;

vlen2 = Lv +2*(IFv-2); % Width of the Vert. Filt. Matrix
hlen2=(vlen2-lFv)/2+ I; % Heigth of the Vert. Filt. Matrix

% Vertical decomposition routine
% 0 ---------------------------------------------------------------------

x = Fv(I :hlen2,I :vlen2)*xh;

% End of routine
% ----------------------------------------------------------------------

%function im =idwt2(file)
"% IDWT2 Two-dimensional inverse discrete wavelet transform
"% IDWT2(FILE) returns the reconstructed image IM by
"% taking the inverse wavelet transform of wavelet coefficients
"% stored in FILEDWT.

"% Alper ERDEMIR
"% June 1993

"% Load the wavelet coefficients and construct the filter matrices
% -------------------------------------------------------------------
%eval(I "cO = load2("',ftie,") ]

%eval(I'load ',file.'_dwt'j)
if -exist('HH')

IHHHVGHGV,NhNvl = filts2(cO,flt.qq.2);
end

% Reconstruction routine
% -------------------------------------------------------------------
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eval(I'"m = c'.num2str(lowest).';'j)
for lvl=lowest:-I:I

cwrk-= rctver2(im,HVNv);
eval(I 'dwrk I = rctver2(dl ',num2str(Ivl),',GV,Nv);'I)
datvl =cwrk+dwrkl;
eval([ 'dwrk2 = rctver2(d2'.num2str(lvl).',HVNv);'I)
eval(I "dwrk3 = rctver2(d3',num2str(lvl),',GV,Nv):'I)
datv2 = dwrk2 + dwrk3;
dathi =rcthor2(datvl ,HH,Nh);
dath2 = rctbor2(datv2.GHNh);
im =dathl -dath2;
ILv LhI = size(im);
im=im(Nv-2 + 1:Lv,Nh-2-+ 1:Lh);
if Ivi- = I

eval(I'lal a21 =size(dl ',num2str(lvl-l),');'I)
else jal a2l=size(cO);
end
im=im(l:all:a2);

end

% End of routine
%-/ .................................................................

function x=rcthor2(dataFh,lFh)
% RCTHOR2 conducts the 2-D horizantal reconstruction of
% wavelet and approximation coefficients.
% DATA = Input data
% FH = Horizantal wavelet/scaling filter matrix
% LFH = Horizantal wavelet/scaling filter length

"% Alper ERDEMIR
"% June 1993

ILv Lhl =size(data);
vien = (Lh-l)*2+lFh:

% do the horizantal decomposition

x=(Fh(I:Lh,l :vlen)'*data')':

% End of routine
% -------------------------------------------------------

funct: n x=rctver2(data,Fv,lFv)
% RCTVER2 conducts the 2-D vertical reconstruction of
% detail and approximation coefficients.
% DATA = Input data
% FV = Vertical wavelet/scaling filter matrix
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% LFH = Vertical wavelet/scaling filter length

% Alper ERDEMIR
% June 1993

ILv Lhl=size(data);
vlen --(Lv-I)*2+IFv;

% do the vertical decomposition
% - ---- -- ----------- --------- ----- -- -- ---- ----------- -- -- ------ ------

x - Fv(I:Lv, I:vlen)'*data:

% End of routine

C. VQ ROUTINES

function w = initcb(xB)

% INITCB Initialization of the codebook for VQ
% INITCB(XB) initializes the codebook randomly selecting data
% vectors from the subject data set X.
% X - Data set

% B = Total number of bits

% Alper Erdemir
% June 1993

N =2^B1 % Find the codebook size

% Randomly select the codewords from X

rand('uniform')
Nx -max(size(x)):
for i=l:N

w(:,i) = x(:.ceil(Nx*rand( I )));
end

% End of routine
%- ----------------------------------------------------

function x=dat2vec(y.M)

% DAT2VEC Conversion of data format to be used in VQ
% DAT2VEC(Y,M) converts the input data into the VQ format
% Y = Input data of Nxl (for I-D) or NxN (for 2-D) where N is
% data length
% M = vector/block size

% Alper ERDEMIR
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% June 1993

N = size(y);

n I>M(i);

% if input data is l-D
%• -------------------------------------------------------------------

ifN(O) = I ý N(2) == I
inhei = length(y);
nla=ceil(mbhei/nl);
Y =Y(:);

x -ly;zeros(n I *nI a-m hei.I)];

x=reshape(x.nl ,nla):

% else, input is 2-D

%/----------------------------------------------------------------

else

n2 = M(2);

nla= ceil(N( 1)/nI);

n2a =cefl(N(2)!n2);
x = zeros(nl *n2,nla*n2a);

yy =zeros(nla*n I ,n2a*n2);

yy(l:N(I),I:N(2))=y;
for i= l:nla

ii =(i-I)*nl + i;

for j = I:n2a

k=(i-l)*n2a+j;
J J =(j-))*n2 + J,;
z=yy(il :il +nl-l~jl.'jl +n2-1);

x(:,k) =z(:).

end

end

end

% End of routine
% ------------------------------------------------------------------

function x = vec2dat(y.N,BLK)
% VEC2DAT conversion of the data from VQ format to original format
% VEC2DAT(Y.N.BLK) converts the data Y in VQ format to original

% format of size Nxl (for I-D) or size NxN (for 2-D).

% Y = Subject data in vector format

% N = Size of original data

% BLK = Vector/block size

% Alper Erdemir
% June 1993

% if data is I-D
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if nargin == 2

y =Y(:),
x-ýy(l:N);

% else it is 2-D
% -- ---------------------------- ----------------------- -------------

else
n Ia = ceil(N( I )/BLK( I ));
n2a =ceil(N(2)/BLK(2));
x =zeros(BLK( I )*N( I ),BLK(2)*N(2));
for i I:nla

il =(i-l)*BLK(I)+ l;
for j = I :n2a

k =(-l0)*n2a+j;
j i --(jl)*BLK(2) + I:
z = zeros(BLK( I ),BLK(2));
for I= I:BLK(2)

m =(I-I)*BLK(l) + I;
z{ :,[) =y(m: m + BLK( 1)-1 ,k),

end
x(il:il +BLK()-I,jl:jl +BLK(2)-I)=z;

end
end
x=x(i:N(I),I:N(2));

end

% End of routine
% -------------------------------------------------------

function [wml=Ibg(trbit,BLK)
% LBG conducts the generalized Lloyd's algorithm
% LBG(TR,BITBLK) returns the trained codebook for VQ. The code first
% initializes the codebook, then trains it by using Lloyd's iteration.
% The training stops when the criteria equals to 0.01.
% TR = Training data

% BIT Total number of bits to costruct the codebook
% BLK = Vector/block size

% Alper Erdemir
% June 1993

x =dat2vec(tr.BLK):

% Initialize the codebook

w = mnitcb(x.bit),

m=II:
N=0:

% Do the Lloyd's iteration until convergence

67



% ~ ------ ----- ---------------------- -- ------------- -------------------
for n =l:2

w = Iloyd(x.,w);

m = mse(x.,w.m);

save mnf m w

N=N I;
end

while I
w= iloyd(x,w);

m = mse(x,w,m):

save inf m w

N=N+I;

if abs((m(N-l)-m(ND/m(N-l)) < 0.01

break;

end

end

% End of routine

function wup=lloyd(xw)

% LLOYD Lloyd's iteration for VQ

% LLOYD(X,W) performs the Lloyd iteration for codebook improvement

% to the given codebook W by using the training data set X.

% X = Training data

% W = Previous codebook

% Alper ERDEMIR
% June 1993

L=size(x);

N = size(w);
wup = zeros(N(l),N(2));

u = zeros(N(2). I);

y =ones( I ,N(2));

% Partition the training set into clusters by using NNC

for k = 1: L(2)
d =sum((x(:,k)*y-w). ^2),,

Ina.iw =min(d);
wup(:,iw) = wup(:,iw) + x(:,k);
u(iw) = u(iw) + I;

end

"% Take care of the empty clusters ( < =3 training vectors)

"% by splitting the centroid of the clusters with

"% the highest numbers of training vectors

% .......................................................

i=find(u= =0);
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u(j) = ones(size(i)).
wup = wup./(u*ones( I .L( I )))';
i = find(u <4);

IY II=sort(u);
I = flipud(1);
for n = 1:length(i)

ops = norm(wup(: ,l(n)))*.00 I
wup(:, i(n)) = wup(:,l(n)) + eps;

wup(:, l(n)) = wup(:, I(n))-eps.
u(i(n)) = u(l(n)):

end

% End of routine

function m=mse(x,wm)

% MSE Computation of mean-square error of a codebook
% MSE(XW,M) computes the mean-square error of the given codebook
% W, and returns it by appending the current value to an existing
% vector M, which has the MSE record for each iteration of

% the codebook
% X = Training data
% W = Current codebook

% M Vector containing the MSE record

% Alper Erdemir
% June 1993

N = size(w);
Nx = max(size(x)):

mse I =0:
y =ones( I ,N(2)):

for k= I:Nx
d = sum((x( :,k)*y-w). A2)-.

rose I = mse I + min(d);
end
mse I = mse I/(Nx*N(1));
m=Im.msel I:

% End of routine
% ------------ ----------------------- ------------------ ------- ---- --

function Iz.msel=code(x.w)

"% CODE coding of data set X using codebook W
"% CODE(XW) returns the encoded data, Z, and the mean-square error

% of coding.

69



% X = Data set to be coded
% W = Codebook

% Alper ERDEMIR
% June 1993

N = size(w);
Nx = max(size(x)).
mse 0;
y = ones( I ,N(2));
z = zeros(N(I),Nx);

% Find the closest code vector to each input vector
% ----------------------- - - - - - - - -------------------------------------

for k= I:Nx
d = sum((x(:,k)*y-w).i2),
Imdjiwl = min(d):
z(:,k)=w(:,iw),

rose = mse + md.

end

% Find the mean-square error
% -------------------------------------------------------------------

mse = mse/(Nx*N( I ));

% End of routine
% ---------- -------------- ------------- ----- -- ---------------------- -
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